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Measurements have been made of the anisotropy in the nuclear magnetic resonance 
second moment for the proton resonance in drawn low density polyethylene films over the 
temperature range - 196 to + 60~ 

The experimental results are first compared with the theoretical predictions of a model 
in which it is assumed that the polyethylene chains undergo coherent classical rotation 
about the chain axis. This model is successful in predicting the general pattern of aniso- 
tropy at temperatures close to the melting point. 

To account for the observed reduction in second moment at intermediate temperatures 
further calculations are described, based on a model in which the polyethylene chains 
twist about the chain axis, the total twist being shared equally between all monomer units. 
This does not account satisfactorily for the changes in second moment with temperature. 

It is concluded that satisfactory general agreement between theory and experiment is 
reached if the measured anisotropy at intermediate temperatures derives from rigid lattice 
intramolecular interactions only, and that the intermolecular interactions are averaged to a 
small value. It is suggested that the inter-chain averaging occurs by a chain-sliding 
process. 

At higher temperatures further reduction in the second moment occurs due to coherent 
chain oscillation about the chain axis, which finally leads to complete rotation at pre- 
melting point temperatures. 

1. Introduction 
During the last few years fairly extensive 
research has been carried out on broad line 
nuclear magnetic resonance studies of drawn 
polymers. Much of the work has produced 
interesting qualitative information concerning the 
origin of the anisotropy in the nuclear magnetic 
resonance second moment (see, for example, 
[1, 21). 

Recently McBrierty and Ward [3] reported 
measurements of the anisotropy of the rigid 
lattice NMR second moment on uniaxially cold- 
drawn low density and linear polyethylene. It was 
shown that the observed anisotropy could be 
related to the degree of molecular orientation of 
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the drawn sample by development of the Van 
Vleck second moment formula [4]. 

Measurements of the anisotropy enable the 
orientation of the drawn polymer to be character- 
ised to a good degree of accuracy in terms of 
orientation functions involving the second and 
fourth Legendre polynomials. 

These orientation functions were then used to 
predict the anisotropy of the mechanical 
properties. They also serve the purpose of 
defining the orientation of the drawn polymer for 
studies of molecular motion. 

The study of molecular motion in drawn poly- 
mers is of considerable importance in under- 
standing mechanical relaxations. In polyethyl- 
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ene, measurements of the elastic moduli and loss 
angle over a wide frequency/temperature range 
have shown the existence of several relaxation 
maxima (for review see [5]). 

In this paper we will be concerned with a 
detailed discussion of the molecular interpre- 
tation of the 7 relaxation only. 

2. Experimental 
2.1. Sample Preparation 
The samples of low density polyethylene 
examined for this investigation were the same as 
previously used for measurements of  the rigid 
lattice second moment anisotropy [3] and were 
prepared as follows. Sheets 0.05 cm thick were 
formed from Alkathene WNF-15  (melt flow 
index 7, density 0.917 gcm -8) by compression 
moulding at 150~ and subsequent quenching in 
water at room temperature. Samples 10 x i0 cm 
were cut from these sheets and then cold drawn 
at a rate of 1.25 cm rain -1, without necking, to a 
number of draw ratios. For  the measurements 
recorded in this paper a draw ratio of 3.7 was 
used. 

Circular samples 0.9 cm in diameter, cut from 
the drawn sheet, were then stacked on the shaft 
of the N M R  probe, care being taken to ensure 
that the draw direction of each sample was 
parallel to its neighbour within a very small 
angle. 

2.2. NMR Spectrometer 
All the N M R  measurements were performed 
with a Varian DP60 dual purpose spectrometer 
operating at a proton resonance frequency of 
60 MHz (with a magnetic field of approximately 
14 kG). The Varian sample holder was replaced 
by a square section boron glass shaft on which 
the samples were mounted. The top of this shaft 
was attached to a small goniometer head, thus 
enabling the draw direction of the samples to be 
set at any angle to the applied field H. 

Low temperatures were achieved, either by 
passing dry compressed air through a copper 
spiral immersed in liquid air and allowing the 
cold gas to pass into the probe, or by directly 
boiling offliquid air. The latter technique has the 
considerable advantage of supplying completely 
dry gas which overcomes many of the problems 
associated with icing up of the fine bore tubes 
used to extract the gas from the probe. 

Temperatures above room temperature were 
obtained by passing compressed air over a 
Nichrome heater. For  both low and high 

temperature work the temperature was measured 
by means of a small copper-constantan thermo- 
couple pressed against the samples. 

The modulation field used had a peak-to-peak 
amplitude of 0.38 gauss and a frequency of 40 
Hz. 

The RF power level was chosen to avoid 
saturation of the spectra and was therefore 
different for different sample temperatures. 

2.3. S e c o n d - m o m e n t  Measurements  
The second moment of the resonance line is 
defined by the following equation: 
<AH 2} = 

[ :oo f(H)(H-H*)2 d(H-H*) 
((H-H*) 2) = " f oo 

f(H) d(H-H*) J 
where H is the external magnetic field and H* 
its value at the centre of the resonance and f(H) 
the absorption intensity at a magnetic field H. 

The N M R  spectra were recorded as derivative 
traces due to the audio-frequency modulation of 
the main field H. Integrating the above express- 
ion by parts yields the equivalent equation in 
terms of  f ' (H) the derivative of the absorption 
intensity: 

f oo f ' (H)(H-H*) a d(H-H*) 
<AH2 > ___ �89 _oo 

~ - ~  f ' (H)(H-H*) d(H-H*) 

The second moment was calculated numeri- 
cally, using a digital computer, by reading from 
the N M R  trace values of the derivative 
absorption intensity at small intervals of field H. 

Measurements were carried out at angles of 
y = O  ~ 45 ~ and 90 ~ where ~, is the angle 
between the sample draw direction and magnetic 
field direction, at temperatures of - 196, - 100, 
- 4 0 ,  23 and 60 ~ C. 

3. Theory 
The starting point for the theory concerning the 
effect of motion on the second moment of the 
proton resonance spectra is the Van Vleck 
second moment equation [4]. This relates the 
second moment to the spatial co-ordinates of the 
resonating nuclei: 

(AH ~) = ~ rjk -6 (3 COS 2/3jk -- 1) ~ 

j>k  
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where G = .}I(I + 1)g2Fn 2, I is the nuclear spin 
number, g the nuclear g-factor, /xn the nuclear 
magneton, N the number of non-equivalent 
magnetic nuclei, rjk the length of the vector 
joining nucleij and k, and/3jk the angle between 
rjk and the direction of the magnetic field. 

The theory will be presented in two parts, one 
part concerned with the effect of motion on the 
intramolecular second moment, the other its 
effect on the intermolecular interactions. 

In the previous paper the interpretation of the 
anisotropy in the second moment was made 
along the following lines. The partially oriented 
polymer can be considered to consist of an 
aggregate of anisotropic units of struture. 
Birefringence, X-ray diffraction and mechanical 
measurements have shown that the uniaxially 
cold-drawn sheets of low density polyethylene 
are transversely isotropic. The transverse iso- 
tropy was assumed to arise as follows. Firstly, 
the units of structure are transversely isotropic. 
Secondly, there is no preferential orientation of 
the units of structure in a plane perpendicular to 
the draw direction. To satisfy the first condition 
it was assumed that the units of structure consist 
of a number of unit cells of polyethylene, and that 
the symmetry axis of these units coincide with 
the c-axis of the polyethylene unit cells where the 
a and b axes are randomly oriented in the plane 
perpendicular to the symmetry axes. 

This simple single phase model provided a 
qualitati'r interpretation of the NMR aniso- 
tropy, but did not give a satisfactory prediction 
of the optical and mechanical anisotropy. It was 
therefore decided to adopt a two phase model of 
crystallineand amorphous regions and to assume 
that from the NMR viewpoint the amorphous 
phase can be considered isotropic. With this 

C axis 

assumption the NMR anisotropy relates to the 
orientation of the crystalline regions only, and 
can be used to calculate the corresponding 
orientation functions. A good fit to the optical 
and mechanical anisotropy was then obtained. 

In this paper we will be concerned with the 
NMR anisotropy of the crystalline regions. As 
the measurements were undertaken under 
conditions where a composite signal was observed 
the second moment of the crystalline region 
could be determined separately, if we make the 
assumption that the broad component arises 
only from these regions. 

It was emphasised in the previous publication 
that the interpretation of the NMR anisotropy 
relies on the validity of a formal mathematical 
argument and should not be taken to imply that 
there exist unique units of structure of the type 
described in the model. The interpretation 
certainly suggests that the NMR anisotropy 
arises from the crystalline regions of the polymer, 
but we have no information regarding the size 
and shape of the crystalline regions. We do 
know that the calculated NMR anisotropy 
relates to proton interactions within a sphere of 
radius 5 A in the crystalline regions, and that 
this gives values for the rigid lattice second 
moments which are close to those observed. 

3.1. Effect of Motion on the Intramolecular 
Second Moment 

We will now consider the effect on the second 
moment of a coherent classical rotation of the 
polyethylene chains about the chain axes 
(coincident with the c-axis of the orthorhombic 
unit cell of polyethylene). By coherent, is meant 
a chain is regarded as rotating as a complete 

D r a w  D i rec t i on  
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Figure I Notation used in the calculation of the effect of motion on the second moment. 
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entity without change in the interproton 
distances within that chain. 

The principal stages in the calculation are as 
follows. With reference to fig. 1 we first consider 
a particular internuclear vector rjk which makes 
an angle fljk with the external field H. In the 
previous calculation for the rigid lattice situation 
[3] the factor (3 COS2fljk -- 1) 2 was averaged by 
first relating fljk to the intermediate angles 0jk, 
Cjk, 6 and Ce and subsequently averaging the 
azimuthal angle Cjk over the range 0 ~< Cjk ~< 2rr. 
This step was based on the assumption of 
transverse isotropy of the internuclear vectors 
about the c-axis of  the unit of structure. In the 
case of motion of  the internuclear vectors rjk 
about the c-axis it can be shown that it is the 
factor (3 cos~/~jk - 1) which must be averaged 
(see for example, [6]) and the result of this 
averaging is then squared. 

Summarising then, the basic difference be- 
tween the rigid lattice and motion calculations is 
that in the former the assumption of transverse 
isotropy of the internuclear vectors rjk about the 
c-axis implies that we must evaluate 

<(3 cos 2 fijk -1)2>Avr 

whereas for the situation in which the inter- 
nuclear vectors are in motion about the c-axis 
we evaluate 

(((3 COS 2 fljk -- 1))AvCjk) 2. 

The second part of the calculation of the effect 
of motion on the second moment will involve 
relating the angle 6 to the angles A, Ca, Y and Cr 
which define the angle between the c-axis of the 
unit of structure and the magnetic field H and its 
relationship to the draw direction of the sample. 
In this case we take a "fibre average", which 
means we assume we have transverse isotropy of 
the units of structure about the draw direction, 
that is, we average Ca over the range 
0 ~ r  ~<2~. 

It is proposed to present the calculation in 
terms of  Euler angle transformations, but for 
completeness the treatment using spherical 
harmonic analysis is given in the Appendix. The 
Euler angle method is particularly convenient for 
the calculation of the effect of motion on the 
intermolecular interactions which is also carried 
out later in the paper. 

By the Van Vleck equation: 

G 1} 3 
(/IH2) = N ~  { 3 cOs2fi'k - '  r, k a 

j > k  

and since the interproton distances remain fixed 
throughout the motion we will only need to 
transform the numerator of this expression. 

We may relate fijk to the intermediate angles 
0jk and 8 by: 

cos/?jk = cos 0jk cos 8 
+ sin 0jk sin 8 cos (r - Cjk) 

so that 

(3 cos 2 fljk - 1) 
=3{cos 0jk cos 8 + sin 0jk sin 8 cos(r 8 - r  2 

- 1 = 3cos 20jkcos ~6 
+ 6 cos 0jk sin 0jk cos 8 sin 8 cos(~, - 4'jk) 

+ 3 sin 2 0jk sin s 8 cos~(r - Cjk) - 1 

For rotation of the chain about the c-axis we 
calculate: 

((3 cos 2 fljk - 1))avr = 3 cos 2 0jk cos 2 8 
+ ~ sin 20~k sin 26 cos(r s - r 

q- 3 sin 2 0jk sin 2 8 cos2(r - qSjk) -- 1 

where we average Cjk over all angles between 
0 and 27r with a uniform probability function, 
so that: 

1 
f 2. cos(Ca - Cjk)dCjk = cos ( r  - r = 2~ o 0 

and 

1 cos2(r - ~bjk) dCjk = �89 " c o s ' ( r  - Cjk) y ~  o 

Hence 

(3 cos 2 5 ] k  - -  1)A,~r = 3 cos 2 0jk COS 2 6 
+ ~ s i n  2 0 j k s i n 2 8 -  1 

= �89 cos 2 0jk -- 1)(3 COS 2 8 --1) 

This result must now be squared and averaged 
to give transverse isotropy for the c-axes of the 
units of structure about the draw direction. 
Hence 

((3 cos 2/3ik - 1)Avr ~ 
= ~(3 cos ~ Ojk -- 1)2(3 cos 2 6 - 1) ~ 

and we now relate the angle 6 to the inter- 
mediate angles A and ), by the Euler trans- 
formation: 

c o s 6 = c o s A c o s y  
+ sin A sin y cos(r - }a) 

so that: 

(3 cos ' ~ 6 -  1) 2 = [3 { c o s A c o s y  
+ sin A sin y cos(r - Ca) }2 

- 112= 9 { c o s d c o s y  
+ sin A sin y cos(4b -- Ca) }~ - 6 {cos A cos y 

+ sin A sin y cos(r - Ca)} 2 + 1 
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This expression is expanded and since we 28 
require ((3 cos 2 S - 1)2)Av~ to account  for the 
transverse isotropy of  the c-axis about  the draw 
direction we can simplify the resulting expansion 
using the additional results: 

c o s ( ~ ,  - ~ )  = o c o s ~ ( ~ ,  - ~ )  = o 

cos~(~,  - ~ )  = �89 cos~(~ ,  - ~ )  = 

where these have been averaged over ~A in the 
range 0 ~< ~A ~< 2n-. 

This averaging leads to the result: 

((3 cos 2 3 - 1)2>AvOd 
= ~{(11-30 COS ~ ~, + 27 COS ~ ~) 

+ COS 2 A(252 cos 2 7 - 270 cos 4 9' - 30) 
+ costA(315 cos4 ~, - 270 cos 2 ), + 27)} 

where cosZA and c o s t a  are the orientation 
functions describing the distribution of  the units 
o f  structure about  the draw direction. 

This expression can now be substituted into the 
Van Vleck equat ion to give: 

(AH2) = 32N rjk-6(3 cos 2 0jk - 1) ~ 

j > k  
{(11 - 30 cos ~ y + 27 cos 4 ~,) 

+ cos 2 A(252 cos ~ 7 - 270 cos ~ r - 30) 
+ costA(315 cos a ~, -- 270 cos ~ ~ + 27)} 

This is the modified Van Vleck equat ion for a 
transversely isotropic aggregate and a classical 
rotat ion of  the molecular chains about  the chain 
a x e s .  

Clearly, if we use the appropriate  values of  
c o s t a  and c o s t a  for  a draw ratio of  3.7, as 
determined by McBrierty and Ward  [3] f rom 
their rigid lattice second momen t  data, we can 
calculate the variat ion o f  <AH 2) with orien- 
tat ion angle 7 providing we also calculate the 
lattice sum:  

S = ~. rjk-~(3 cos ~ 0~k - l) 2 
j > k  

This was calculated f rom a knowledge of  the 
co-ordinates o f  the protons  in a polyethylene 
chain using an Elliott 503 computer .  The value 
was computed  as S = 0.0654. I t  is of  interest 
to note that  the motional  second momen t  de- x l 
pends on the value of  only one lattice sum, 
whereas the rigid lattice second momen t  is 
dependent on three. 

The predicted variation of  the second momen t  
with orientation angle for  the intramolecular  
interactions is shown in fig. 2. We cannot  make 
any realistic comparison,  at this stage, between 
the theoretical and experimental results since we 
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Figure 2 Predicted variation of the second moment for low 
density po lye thy lene-draw ratio 3.7, based on the 
coherent classical rotation model, 

have ignored the pro ton  interactions between 
chains. The intermolecular interactions in the 
rigid lattice situation are highly anisotropic and 
in fact result in the value of  the second momen t  
at ~ = 90 ~ being larger than at ~ = 0 ~ It  is 
therefore necessary to perform a calculation of  
the intermolecular interactions in the case where 
there is chain rotation. 

3.2. Ef fect  of  Mo t i on  on the  I n t e r m o l e c u l a r  
S e c o n d  M o m e n t  

The calculation of  the effect of  mot ion  on the 
intermolecular second momen t  is related to the 
work  of  Andrew [7] on molecular mot ion  in 
paraffins. Fig. 3 shows a diagram (to scale) o f  the 
a-b plane of  a polyethylene unit  cell with 

C 

Projection of 

5) 

Figure 3 Projection in the a-b plane of a polyethylene unit 
cell, The circles represent the locus of the protons when 
the chains rotate about the c-axis, 
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molecular chains at the normal cell positions. 
When the chains undergo classical rotation about 
the c-axis it can be calculated from bond angles 
and lengths that the protons will sweep out a 
circle of radius 1.39 A. The diagram only 
includes those chains whose protons will be at a 
distance of less than 5 A at the closest distance of 
approach, with the protons belonging to the 
chain at the cell centre. We will assume that 
distances greater than 5 A may be ignored. Due 
to the dependence of the second moment on 
the inverse sixth power of the distance between 
the protons this is a reasonable approximation. 

An interesting fact now arises just from 
consideration of the geometry of fig. 3. The 
chains 1 to 6 and the one labelled "A"  at the 
cell centre cannot move as a "set of meshed gear 
wheels" which would seem to be necessary, 
bearing in mind that the Van der Waals' 
diameter for protons is approximately 2.4 A. 
This leads to two possible conclusions: 
(i) Free uncorrelated chain rotation will occur 
only when lattice expansion is sufficiently great 
for these Van der Waal's interactions to be 
unimportant. Actually, even at room tempera- 
ture, the lattice constants a and b are still not 
large enough to permit this. X-ray evidence, 
however, shows that as the temperature increases 
a gradual change from orthorhombic to hex- 
agonal symmetry occurs. This effect is not 
entirely attributable to lattice expansion and the 
formation of a lattice of higher symmetry 
probably results from, at least, some chain 
rotation. 
(ii) If  uncorrelated chain rotation is energetically 

.{3 

((3 

unfavourable then the chains can move in only a 
small number of alternative ways. The possi- 
bilities are chain twisting, coherent chain 
oscillation and a diffusion of chain segments past 
each other. The latter mechanism of chain sliding 
is similar to the 7e relaxation proposed by 
Hoffman, Williams, and Passaglia [8]. 

The relevance of this to the experimental 
observations will be discussed in due course but 
for the moment, however, we will assume that 
uncorrelated chain rotation occurs and that the 
chains are arranged on a hexagonal lattice. This 
is a realistic approximation for polyethylene, 
and simplifies considerably the calculation of the 
intermolecular second moment since there is 
only one unique distance between chain centres 
for chain A and all of its nearest neighbours. 

The major difference between the calculation 
of the intermolecular second moment and the 
intramolecular contribution is that in the latter 
the interproton distances remained constant 
whereas in the former we must begin by comput- 
ing 

cos~/3jk 1} )  If 
for the particular motion we envisage, i.e. rjk'for 
the intermolecular calculation is changing at all 
points of the motion and we must include this in 
our calculation. 

Referring to figs. 1 and 3 we may write as 
before: 

COS ~ j k  = COS 0jt~COS 3 

+ sin 0jk sin 3 cos (~  - ~jk) 

cos 2 fljk -- l \  _ 3 {COS 0jk COS 3 + sin 0jk sin 3 cos (~  -- q~jk)} 2 -- 1 
r j  k 3 f r j  l~ 3 

3 cos 2 0jk COS 2 3 -}- 6 cos  0jk sin 0jk cos 3 sin 3 cos(&, - &jk) 
rjk 3 

3 sin 2 0jk s in  2 3 cos2(t~8 - -  t~jk) --  1 

@ rj  k 3 

cos 2/3jk - 1 ) \  ~ 2 " (c~ 0jk~ . -,o (3  sin 20jk cos((~b, - -  ~jk)~Av 
. . . . .  ~-t = .)cos 6,~ ---=7-~? + s m z o ~ - - - ~ -  

rjk j /  t. _ rjk .J-c~ 0jk-  
j'3 sin 2 0jk[1 + cos 2(~b e - ~ j k ) ] ' ~  - -  / ~  = 3 COS 2 3 

+ sin ~ 3 ~ rjka JAy ~rjkZjAv ~ r - ~ ' u S J a  ", 

fsin 20j_k_k COS ~jk; + 3 sin 23 sin ~b, {sin 20jk sin ~jk~ 
+ { sin 23 cos ~b, ~ r~k3 )A,, rjk ~ JAy 

/sin ~ 0jk\ { + ~ sin S 3 t lAv + sin2 3 cos 2q~ e sin2 0jk cos 2q~jk; 
r j  k 3 ) Av 

r 1 
+ - 

�9 JAy 
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and we may rewrite this in the more compact 
form: 

( {  "3 c~ fij" - ra ka I}> = 3A c~ 8 

+ ~ B sin 28 cosy, + ~ C sin 28 sin ~ 
+ ~ D sin 2 8 + } E sin s 8 cos 24e 

+ l F s i n  ~" 3 sin 24e - G 

where we have defined the following quantities to 
be averaged over Oak, 4jk and rjk: 

fcos '  Ojk) 
A = ~  rjka JA~ 

{sin 20jk COS ~jk; 
B = rik a jay 

2sin 20jk sin ,k\ 
C = L rJk JAy 

fsin s 0jQ 
D = L ~ J A v  

E = {sin~ OJk c~ 2~.,k} 
rj k 3 av 

F = ~ sin~ 0jk sin 2~jQ 

The evaluation of these lattice sums will be 
described in more detail later, but a number of 
points can be made at this stage. First the sums 
must be averaged over 6jk and ~jk for the 
motion and they must be computed for all non- 
equivalent interactions between chains within 
the unit of structure up to a distance of 5 A, i.e. 
we compute 

 'fcossOa;  
A = ~-~L rJ k8 JAy  

j>k 

and similarly for the other lattice sums. 
Fortunately in the model chosen there is only 

one unique interaction to be computed, but 
extending the calculation to include other 
interactions presents no problems. It should also 
be noted that only when ~ is averaged over the 
range 0 to 2~r as in the case of the intra molecular 
interaction, do we obtain the simple result: 

(3 cos s/3~k - 1}~v~ . 
= �89 c o s  ~ 01k - 1 ) (3  c o s  s 3 - -  1) 

In the more general case which is now being 
treated, the value of this average will depend on 
all of the lattice sums listed above. 

For convenience we will put 
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3 c~ 5ik - 1 t 
rjk 3 = y. 

We require to find (y)L In the absence of any 
simplifying assumptions the resulting expression 
for (y)s will be extremely tedious to evaluate. 
Because the contribution to the second moment 
due to intermolecular interactions is much small- 
er than that due to intramolecular interactions, 
we are justified in introducing an approximation. 
This is to assume coplanar motion &the protons 
in neighbouring chains, i.e. 0jk = 90 ~ Non 
coplanar motions could also be readily consid- 
ered by retaining the full expression for y. We 
now have: 

A = B = C = O ;  D --- G = {rla}Av 

;cos 2 jk\ 
E = L-37-  

/s in 2~,k'~ 
r = L j=  v 

Hence 

y = ~sin s S{Ecos 2~e + Fs in  2~e + G} - G 

Squaring this and grouping terms gives the 
result: 

(y)2 = _~ sin 4 3 {E s cos 2 2~a + F 2 sin ~ 2 ~  
+ EF sin 4 ~  + 2 GE cos 2q~ a § 2 FG sin 2q~ 
+ G 2} - 3 Gsin 2 8{Ecos2q5 a 

+ Fsin29~a + G} + G ~ 

Next it is assumed that there is transverse 
isotropy of the vectors joining chain A to all 
other neighbouring chains. Only under this 
condition can q~a be averaged over the range 
0 ~< ~a ~< 2~- and an expression for (y)2 obtained 
which only involves 3. If  we were to take a 
discrete average for (y)~ over the chains 1 to 6 
using the hexagonal symmetry about A we 
would still find that (y)s = f(3, ~a). 

Averaging ~e over 0 to 27r we have: 

cos 2 2~'7 = sin s 2q5~ = �89 sin 275 a = cos 2~e 
= sin 4~e = 0 

and hence: 

(Y)AvOa = 89- sin ~ 8{E 2 + F 2 + 2G s} - 3G ~ sin s 3 
+ G s 

Following the lines of the intramolecular 
calculation the angle 3 is related to the inter- 
mediate angles A q~,~, 7' and ~ by the Euler 
relation: 
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cos ~ = cos A cos 7 + sin A sin 7 cos@~ - ~b~) 

This is now substituted into the above 
equation for (Y)~avoa and the resulting expression 
must be averaged over ~b a in the range 0 to 2zr in 
accordance with the assumption of transverse 
isotropy of the c-axes of the units of structure 
about the draw direction. Carrying out this 
averaging leads to the following result: 

= { 3 H - K +  cos 2 7 ( 2 H -  3K) + 3Hcos  47} 
+ cos2 A{2H - 3K + cos27 (12H + 9K) 
- 30H cos4 7} + c o s 4 A { 3 H -  30H cos2F 
+ 35H cos 4 7} 

where we have defined two new lattice sums: 

H =  ~ { E  = + F  2 + 2 G  =}; K =  �89 2 . 

Substituting this result into the Van Vleck 
equation gives: 

<AH2)I~ER 

G ~ [{3H K + cos 2 7(2H 3K) 
N 

i > k  
+ 3Hcos4~} + cos2A{2H - 3K 
+ cos 2 7(12H + 9K) - 30H cos 4 7} 
+ cos4A {3H - 30H cos ~ ~' + 35H cos ~ 7}] 

This is the modified VanVleck equation for the 
intermolecular second moment for a coplanar 
system of rotating protons. In principle the 
problem is now solved, provided that the lattice 
sums E, F and G are evaluated. This involves 
averaging the interactions between pairs of 
rotating protons, whose motions are uncor- 
related. This calculation has been carried out 
previously [7]. 

The final value of the lattice sums depends 
only on the distance between chain centres and 
the radius of  the circular path swept out by the 
rotating protons. Using published values for the 
lattice constants at room temperature for low 
density polyethylene and the co-ordinates of the 
protons, the following values were obtained 
for E, F and G: 

E = 0.03954; F = 0 (from symmetry of motion) 
G = 0.04582; 

giving H = 0.001621, K = 0.002099 

These values enable the variation of the inter- 
molecular second moment with orientation 
angle 7 to be determined if values of cos 2 A and 
cos 4 A are inserted into the equation. As before, 

these values are taken as the rigid lattice orien- 
tation functions as determined by McBrierty and 
Ward [3]. The predicted anisotropy of the inter- 
molecular second moment is shown in fig. 2 
together with the total second moment, which is 
just the algebraic sum of the intra and inter 
components. It is interesting that the inter- 
molecular second moment is very small N 1 to 2 
gauss 2 when motional averaging occurs and the 
anisotropy in the second moment is also very 
small. This is to be contrasted with a rigid lattice 
intermolecular second moment ,-, 9 gauss 2. 

4. Results and Discussion 
4.1. General Features 
Fig. 4 shows the first derivative of the N M R  
spectra obtained with cold drawn low density 
polyethylene at the temperature and alignment 
angles ~, as indicated. On the simplest model, 
polyethylene can be regarded as consisting of  two 
phases - a crystalline and amorphous phase and 
the proportion of each will depend on prepara- 
tion conditions, draw ratio etc. The observed 
N M R  spectra can then be regarded as the sum 
of the spectra that would be obtained separately 
from the crystalline and amorphous regions. 

First, a simple qualitative interpretation will 
be given of the changes which occur with 
temperature. At low temperatures ( ~  - 196 ~ C) 
any chain motion will be quenched and the 
material possesses a rigid structure. Since the 
predominant contribution to the line width of the 
N M R  spectra will derive from proton inter- 
actions within a chain, it is to be expected that 
the N M R  spectra from both the crystalline and 
amorphous phases will be approximately similar 
at these temperatures. This accounts for the 
presence of only a single broad component in the 
spectra and it is only at ~ = 90 ~ that the narrow 
component is slightly visible. 

As the temperature is raised, a narrow com- 
ponent is observed, which increases in amplitude 
with increasing temperature, being particularly 
noticeable at - 40~ and 7 = 0~ in fig. 4. This 
effect is attributed to hindered rotation of the 
chain molecules, predominantly in the amorph- 
ous regions where interchain proton interactions 
are small. 

Further increase in temperature results in a 
rapid decrease in the broad component of the 
spectra and at 23~ a two phase structure is 
clearly visible at ~, = 0 ~ At 60~ liquid-like 
spectra are found in which nearly all the molecular 
chains are in motion in both the crystalline and 
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Figure 4 First derivative of the proton resonance absorp- 
tion signal in cold drawn low density polyethylene-draw 
ratio 3.7, obtained at different orientation angles ~ and 
sample temperatures. 

amorphous phases. Further increase in tempera- 
ture only results in a rapid melting of the 
specimens. 

I t  is of interest at this stage to compare these 
results with those obtained by Olf and Peterlin 
[1] for high density linear polyethylene. Their 
measurements show very similar spectra at a 
temperature of - 1 9 6 ~  but a two phase 
structure is only visible at around room tempera- 
ture, as compared with - 40~ on our measure- 
ments. Even at 125~ a very clear two compon- 
ent curve is recorded in their case. 

These differences can be attributed to the 
effect of branching on the molecular mobility in 
polyethylene. The presence of greater concen- 
trations of  branch points in the low density 
polyethylene compared with the high density 
polymer gives rise to a correspondingly greater 
degree of molecular mobility at a given temper- 
ature. 

Apar t  f rom direct temperature differences just  
described, there are also significant detailed 
differences in the anisotropy of the spectra with 
the alignment angle 7 although, as will be 
discussed later, the anisotropy of the second 
moment  with angle y is very similar for both 
Olf and Peterlin's [1 ] results and ours. 
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Figure 5 Experimental variation of the second moment with 
temperature for various orientations ~, for cold drawn low 
density polyethylene - draw ratio 3,7. 

Fig. 5 shows the variation of the second 
moment  with sample temperature at the three 
orientations Y = 0~ 45~ and 90 ~ of the draw 
direction with respect to the magnetic field H. 

I t  should be noted that the minimum of the 
second moment  occurs at ~ = 45 ~ for all 
temperatures in the range - 196 to 60~ In 
addition the maximum of the second moment  is 
at y = 90 ~ for temperatures less than - 15~ 
but shifts to ~, = 0 ~ for temperatures greater 
than this value. 

4.2. Detailed Analysis of the Broad 
Component of the NMR Spectra 

For two reasons, we have confined our attention 
to a discussion of the broad component  only. 
First, the crystalline regions giving rise to the 
broad component  are in a more defined state 
than the tangled amorphous regions. This 
enables us to use the results of our theoretical 
calculation in which we assumed the polyethylene 
chains occupied distinct positions on an ortho- 
rhombic lattice. Second, the previous paper on 
the anisotropy of the rigid lattice second moment  
enabled orientation functions to be evaluated, 
which defined the orientation of the crystalline 
regions of  the sample. The N M R  spectra were 
therefore decomposed into a broad and narrow 
component. Although this is a somewhat 
arbitrary process most  of the uncertainty in 
constructing the broad line curve from the 
composite signal arises close to the peak of the 
absorption curve, and this region does not 
contribute greatly to the second moment.  
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Fig. 6 shows the variation of the second 
moment  of  the broad component  with tempera- 
ture for various orientations 7. I t  is interesting 
that the curves for 7 = 0~ and 90 ~ converge at 
a temperature of  - 100~ 

3o i ~ .  

v m 

,o  

y=45"\ 

0 I l I I I I I 
-200-160 -120 -80 -40 0 40 80 

Temperature ~ 

Figure 6 Experimental variation of the second moment  of 
the broad component  with temperature for  various 
or ientat ions 7 for  cold drawn low density polyethylene - 
draw ratio 3.7. 

The anisotropy of the second moment  with 
orientation angle y for various temperatures is 
clearly seen in fig. 7. The second moment  is seen 
to reduce with increasing temperature for 
7 = 90~ This is to be expected if the poly- 
ethylene chains are undergoing motion about the 
c-axis of  the unit cell. A more surprising result is 
the reduction in the second moment  with increas- 
ing temperature for y = 0 ~ I t  can be seen that 
the effect is cons ide rab l e -a  reduction of 

9gauss  2 from a temperature of  - 196 to 
60~ 

Before we compare our experimental results 
with those predicted on the basis of  the coherent 
classical rotation model it is necessary once 
again to draw attention to the quite significant 
differences in the pattern of  behaviour of  second 
moment  versus temperature for low-density and 
linear polyethylene. 

The results we report for the variation of 
second moment  as a function of temperature and 
orientation 7 for low-density polyethylene 
closely follow results reported elsewhere, e.g. [9] 
and [10]. In all these cases it is apparent that the 
second moment,  particularly for 7 = 0~ and 
90 ~ , falls quite considerably over the range 

- 196 to about  20~ This is to be compared 
with the results for linear polyethylene reported 
by Olf and Peterlin [1] in which the second 
moment  for y = 0 ~ and 90 ~ exhibits only a 
slight decrease over this range. 

4.2.1. Comparison of Experimental Results 
with a Classical Rotation Model 

It  is seen immediately when figs. 2 and 7 are 
compared that at no temperature is there agree- 
ment between the experimental and predicted 
curves based on a rotating chain model. How- 
ever, the theoretical curve predicts a large 
anisotropy in second moment  at y = 0 ~ and 90 ~ 
and it is this feature that is exhibited by the 
curve at 60~ shown in fig. 7. The absolute value 

30~ 

t 

}2o~ o 

Temper'atures : 13 -196~ 

o -1OO*C 
�9 -40~ 
x 23~ 
~, 6 0 ~  

- ' ' ~ _ o ~ a  ~ 

I I I I 1 I 
0 0 15 30 45 60 75 90 

Orientation Angle y (deg.] 

Figure 7 Experimental variation of the crystall ine second 
moment  with orientat ion angle y for  cold drawn low 
density polyethylene - draw ratio 3.7. 

of the second moment  for y = 0 ~ is smaller than 
predicted in fig. 2, but this reduction is easily 
explained if the orientation functions describing 
the drawn state of the polymer are smaller than 
those corresponding to the rigid lattice situation. 
This is a very likely explanation when it is 
considered that the only possible way in which 
chain rotation can occur classically, without the 
hindrances imposed by the "gear-wheel"mechan- 
ism, described earlier is when the material is just 
below the melting point. Under these conditions 
the polymer is showing distinct signs of shrink- 
age and distortion since it is supported in an 
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unconstrained state on the shaft of the N M R  
probe. The orientation functions derived for the 
rigid lattice case are not applicable under these 
conditions. 

Coherent classical rotation is not possible at 
temperatures lower than about  60~ because 
even if thermal lattice expansion is taken into 
account the resulting increase in the separation 
of the polyethylene chains is still insufficient to 
allow unimpeded rotation of the chains. 
Classical rotation must, therefore, be a pre- 
melting phenomenon associated with an almost 
liquid-like state of the polymer as exhibited by 
the narrowing of the absorption line shown in 
fig. 4. 

4.2.2. Comparison of Experimental Results 
with a Chain Oscillation Model 

It  would appear intuitively reasonable that if 
chain oscillations are to occur at all they would 
precede coherent chain rotation. This, in fact, 
appears to be the case for temperatures above 
about  - 40~ I t  can be seen in fig. 6 that the 
curve corresponding to the variation of second 
moment  with temperature for y = 90 ~ meets the 
curve for 7 = 0 ~ at - 100~ and only diverges 
again at - 40~ where the ~ = 90 ~ curve is 
rapidly decreasing. 

These results suggest that for temperatures 
above - 4 0 ~  the chains are undergoing 
classical oscillation about the c-axis, the effect of  
which will be intermediate between the rigid 
lattice situation and complete classical rotation. 
Andrew [7] showed that the primary effect of 
chain oscillation is to decrease the second 
moment  at 7 = 90~ more than at 0 ~ In addition 
the rapid decrease in the second moment  in the 
range - 40~ upwards will be partly due to the 
increasing number of chains oscillating and also 
to lattice expansion, which will enable the 
amplitude of oscillation to increase. 

4.2.3. Comparison of Experimental Results 
with a Chain Twisting Model 

A feature exhibited by low density polyethylene 
is the continuous decrease in second moment  at 
all angles over the complete temperature range. 
The curve for ~, = 90 ~ falls below that for 
~, = 0 ~ at temperatures above - 40~ where we 
suggest chain oscillation is occurring. The initial 
low temperature decrease does not occur in 
linear polyethylene, and must  therefore be 
associated with the presence of branch points. 

I t  is of considerable interest that the second 
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moment  versus orientation curves for tempera- 
tures of -- 100 and - 40~ shown in fig. 7, 
closely resemble the form of the curve for the 
anisotropy of the intramolecular rigid lattice 
second moment  shown in fig. 8. A feature 

I 2 4 .  

E 

o 

B 

Experimental data : o -100~ 

�9 -4O~ 
Broken line: lntramolecular rigid Iclttice 

second moment plus 
fsotropic intermolecular 
second moment of 

2 gauss 2 

1 J I m I I 
0 15 30 45 60 75 90 

Orientation Angle ~ (deg) 

Figure 8 Compar ison of int ramolecular  second moment  

an isot ropy plus isotropic in termolecular  interact ion wi th 

exper imental  data obtained at temperatures of -- 100 and 
- -  4 0 ~  

characteristic of the rigid lattice curve, shown in 
fig. 7, is the larger value of second moment  for 
), = 90 ~ than at ), = 0 ~ This is due to the effect 
of the intermolecular interactions which for a 
rigid lattice are highly anisotropic. 

The symmetry of the curves for - 100 and 
- 4 0 ~  suggest that  either (i) these inter- 
molecular interactions are being averaged out 
and that the decrease in second moment  from 
- 196 to - 40~ must  be accounted for by 
intermolecular interactions, or (ii) intramolecular 
averaging must  be occurring parallel to the 
chain axis to account for the decrease in the 
second moment  at ~ = 0 ~ 

Let us first consider that the chains twist 
through a small angle perpendicular to the chain 
axis (see for example [8]) The chains could be 
regarded as held fixed at the folds at the lamella 
surfaces and thermally activated chain twisting 
could then occur in which successive CH,  
segments move through some angle 0 with 
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respect to their neighbours. It is also reasonable 
to assume that the maximum angle of twist 
occurring at the centre of the chain length is 
created by successive segments moving through 
equal angles with respect to the previous segment. 

In practice only small angles of twist are likely 
to occur, since any twist must be generated by 
simultaneous rotation about two C-C bonds in 
the planar zig-zag chain configuration of poly- 
ethylene, and large angles of twist will in any 
case not be possible, due to the large Van der 
Waals' interactions between chains. 

The effect of the twist on the second moment 
parallel to the chain will now be discussed. As 
the chain twists it is expected that the proton 
interactions will decrease since the interproton 
distances will increase slightly. An effect of this 
type occurs in polytetrafluoroethylene in which 
a small deviation from the planar trans- 
configuration must occur due to Van der Waals 
interactions. 

The actual calculation of the anisotropy of the 
second moment for various angles of chain twist 
can be carried out either by assuming a two-site 
model of the type described by Hoffman et al [8 ] 
or by assuming a particular form for energy 
function versus angle of twist. 

The two site model, although perhaps not 
physically reasonable serves to provide us with an 
estimate of the effect of twist on the second 
moment. The calculation is carried out by 
calculating the expression: 

{ 3 cos~ ~,k - 1} 

in the distorted and non-distorted configuration, 
averaging and squaring the result to give the 
second moment. 

It is easy to obtain an upper estimate of the 
effect of chain twisting on the second moment by 
calculating the rigid lattice second moment in the 
distorted state because the second moment 
should be very sensitive to small angles of twist. 
In fact, because of the inverse sixth power 
dependence of the second moment, it only 
requires a 10~ increase in the interproton 
distances parallel to the chain to halve the intra- 
molecular second moment. Qualitatively at least, 
this would appear to be a very hopeful mechan- 
ism in reducing the second moment at ), = 0 ~ 

Computer calculations were accordingly 
carried out of the variation of the intramolecular 
rigid lattice second moment as a function of 
orientation angle for various angles of twist, the 

angle of twist being the angle between two 
successive monomer units. The results are shown 
in fig. 9. In fact the very small changes in the 
anisotropy with increasing angle of twist extends 
to much larger angles of twist than are shown in 

26  

22  

Angle of chain twist - -  0" 
_ _ _  10 ~ 
. . . . .  20  ~ 

4 - -  r I r r r _ t ~ . . . .  J 
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Or i en ta t i on  Ang le  u  

Figure9 Intramolecular rigid latt ice second moment  versus 
or ientat ion angle " / f o r  various angles of chain twist  for  
cold drawn low density polyethylene - draw ratio 3.7. 

fig. 9, but this is not physically realistic. Of 
course it is necessary to emphasise once again 
that the curves in fig. 9 are an upper estimate of 
the anisotropy change with twist and that by 
computing 

I 3 cos~ ~jk - 1} 
 j-y 

and invoking a specific analytic function to 
define the energy barrier for chain twisting, one 
can expect the invariance of the anisotropy with 
angle of twist to be even more marked. 

These results lead to the conclusion that even 
if chain twisting is occurring, the observed 
anisotropy of the second moment with the 
orientation angle 7 cannot be entirely due to this 
mechanism. It therefore seems most probable 
that the reduction in the second moment parallel 
to the chain direction is due to the averaging of 
the intermolecular interactions by neighbouring 
chains sliding past each other. We might expect 
that the effect of the Van der Waals' forces would 
be much less in this situation than in the cor- 
responding case of chain twisting, where both 
large intra- and intermolecular interactions 
must be overcome. 
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4.2.4. Comparison of Experimental Results 
with a Chain Sliding Model 

The intermolecular interactions for chain sliding 
will probably average to about the same value as 
for the calculation we carried out for rotating 
chains, that is, we can assume an intermolecular 
second moment N 1 to 2 gauss ~ and that it is 
approximately isotropic. If  we add an isotropic 
contribution of 2 gauss 2 to the intramolecular 
rigid lattice curve we find that: 

at y = 0 ~ second moment N 24 gauss ~ 
7 = 4 5 ~  ,, ,, ~ 18 ,, 

= 9 0  ~ ,, ,, ~ 2 4  ,, 

These results are compared with the experi- 
mental curves corresponding to temperatures of 

- 100 and - 40~ in fig. 8 and we find that a 
very close fit is obtained at a temperature of 

_ 70~ 
Comparison with the dynamic mechanical data 

(e.g. [5]) suggests that the molecular motion 
which we are invoking to explain the intermedi- 
ate temperature N M R  results must relate to the 
y-relaxation, which occurs at - 1 2 0 ~  at a 
frequency ~ 102 Hz. Both low density and high 
density polyethylene show y relaxation processes, 
and in both cases the relaxation appears to be a 
composite process involving at least one distinct 
relaxation for the crystalline and amorphous 
regions of the polymer respectively [8]. In this 
paper we have also analysed the changes in the 
broad component of the N M R  signal only. The 
chain sliding process which we propose to 
explain the reduction in the intermolecular 
interactions, therefore provides a molecular 
interpretation of the crystalline 7 relaxation 
process in low density polyethylene. Our data for 
N M R  in low density polyethylene differs 'from 
that of Olf and Peterlin [1] for high density 
polyethylene, in that we observe large changes in 
second moment in the temperature range 
- 196~ to room temperature, whereas only 
small changes were observed in high density 
polyethylene. We therefore conclude that the V 
relaxation processes in low density polyethylene 
include a chain sliding process which does not 
occur in the high density polymer. A possible 
process would be the 7e process proposed by 
Hoffrrian et al [8 ] who envisage that an individual 
molecular chain rotates through 180 ~ and is 
simultaneously translated along its axis. 

The y-relaxation is also attributed by many 
workers, e.g. Willbourn [11], to segmental 
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motion of - CH2 sequences in the amorphous 
regions. This mobility would give rise to the 
narrow component of the N M R  signal as has 
been concluded by several investigators. 

Irrespective of the detailed mechanism of chain 
sliding that occurs, it is clear that in the closely 
packed polyethylene lattice some occasional 
disorder, possibly due to branch points, is needed 
to provide space for c-axis chain translations at 
these low temperatures.This is in agreement with 
Hoffman et a[ [8] who suggest that the 7e 
relaxation is dependent on the presence of defects 
and highly perfect crystals should show a 
practically negligible ye effect. 

It should be mentioned that if the Hoffman 
mechanism operates under these conditions as 
distinct from a straightforward chain diffusion, 
the potential energy minima at the end points of 
the rotation of the chain must be very narrow, so 
that chains spend most of their time at either one 
or other of these minima and a negligible time in 
between. Thus we are visualising the case of 2- 
fold tunnelling, with delta function potential 
energy wells at ~b and ~ + zr. If  the analytic 
function describing the energy barrier is of some 
other form, the resulting intramolecular inter- 
actions will not be those corresponding to the 
rigid lattice state but will be slightly reduced. 

An exact quantitative evaluation of the effects 
of the Hoffman mechanism on the N M R  second 
moment is difficult, due to lack of information on 
the specific eigen functions corresponding to a 
rigid rotator moving in a 2-fold potential. It can 
be shown that classical averaging of the angle 

during rotation is only valid for 3-fold poten- 
tials or higher and it is only in these cases that 
cos2~b = �89 for complete rotation. For  2-fold 
potentials it can be shown that this average re- 
quires information concerning the eigen functions 
corresponding to the particular energy barrier. 

5. Conclusions 
The reduction in second moment of the broad 
component at intermediate temperatures can be 
attributed to a decrease in the intermolecular 
interactions by a chain sliding process. This 
process provides a molecular interpretation of a 
7 relaxation process in low density polyethylene. 

As the temperature increases, chain oscillation 
occurs which finally leads to coherent classical 
rotation of the chains about the chain axes at 
temperatures close to the melting point of the 
polymer. 
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Appendix 
Effect o f  motion on the intramolecular second 
moment  using spherical harmonic analysis 
The Van Vleck equation for the second moment  
may also be written: 

(AH 2) = ~ -  rj~: -6 P.,2(cos fljk) 

where P2(cos/3jk) is the second Legendre 
polynomial. 

As before we must first express P~(cos flak) in 
terms of  the intermediate angles 0jk, ejk, 8 and 
Ca defined in fig. I. We can do this by applying 
the Legendre addition theorem: 

2 

P2(cos/~jk) = -~- Y2m*(0 jk ,  eJk)  Y~m(8, qS~) 

rn~ --2 

and the Y's are spherical harmonics defined by: 

r m(0, | 
_ [ 4rr (1 + m)!] -§ plm(co s 0) e'me 

/ (21 + 1)(1 - m)!J 

and Plm(cos 0) are the associated Legendre 
functions. 

Now we require 

<e~(cos ~k)>r 
2 

~-  - ~  Y2m*(0jk,  ~ jk )  Y2m(8,  9~a jk 

i n = - 2  

and this must be averaged over 2~r. Considering 
only the r dependent part  of Y~m(0, r it can be 
seen that this average will take the form: 

1 f2~ JO elm(Ca -- ~Sjk) d(r _ ~jk) 

= 2-0["1 [eim(~8 -- CJk)]: IriIl~ 
= 0 unless m 

Hence 

4rr 
(P~(cos ]Sjk))r = -~ Y20*(0jk, ejk) Y~0(a, Ca) 

= P~(cos 0ak). e~(cos 8). 

We now square this result and relate 8 to the 
intermediate angles A, r Y and er  and finally 
average r over the range 0 to 2rr to account for 
the transverse isotropy of the c-axes of  the units 
of structure. 

Therefore, 

[(P2(cos/3jk))r ~ = P2~(cos 0jk)P2~(cos 8) 
= P2~(cos Oak) ~ alPl(cos 8) 

1 

where Pz2(cos 8) has been expanded as a series of  
Legendre polynomials so that the addition 
theorem can be applied to each term of the 
series. I f  the addition theorem is applied to each 
term of the series and an appropriate average 
over r taken, we find: 

= P==(cos 0ak ) E atP,(cos y) Pt(cosA) 
1 

Thus we may substitute this into the Van Vleck 
equation and get: 

(AH 2) = ~ -  S alPl(cos y) PI(cos A) 

1 

where S is a lattice sum defined by 

S = ~ rjk -G P~2(cos 0jk) 
j>k  

and ifP~2(cos 0jk) is expanded as above we may 
write: 

S = 7; rjk -G ~ alPl(cos 0jk) 
i>k  l 
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